Hall	Ticket	Num	ber:
-			

1
L
8
L
1

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CSE: CBCS) VI-Semester Main & Backlog Examinations, May-2019

Compiler Construction

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Q. No	Stem of the Question	М	L	CO	PO
	Part-A (10 × 2 = 20 Marks)				
1.	What is the difference between lexeme, token and pattern?	2	2	1	1,2
2.	Write the regular expression have all strings of 0's and 1's with no two consecutive 0's.	2	3	1	2
3.	Differentiate between top down and bottom up parsing strategies.	2	2	2	1,2
4.	Check whether the given grammar is ambiguous or not? S -> S+S S*S id	2	3	2	1,2
5.	List the types of three address statements.	2	2	3	1
6.	Translate a+-(b+c) into quadruples.	2	3	3	1,2
7.	What are the functions of heap memory manager?	2	2	4	1
8.	Find the starting memory location of int a[3][4] where base address =0 and size of integer=4	2	2	4	1
9.	What is DAG? Write down its advantages.	2	2	5	1,2
10.	What is code motion? Apply code motion for the given code snippet While(i<=limit-2){ //limit value is not changing}	2	3	5	1,2
	Part-B ($5 \times 10 = 50$ Marks)				
11.a)	Explain the phases of compilation with the following example. Position=initial + rate*60	6	2	1	1
b)	Construct transition diagram for unsigned numbers.	4	3	1	1,2
12.a)	Consider the following grammar. S ->Xa X ->aXb a	4	3	2	1,2
	Check whether the given grammar is CLR or not?				
b)	Consider the grammar : S ->aAd bBd aBc bAc Construct LALR(1) parsing table for this grammar.	6	2	2	1,2
13.a)	Write three address code ,triple and indirect triple for the given expression. (a * b) + (c + d) - (a + b + c + d)	4	2	3	1
b)	Construct a Syntax-Directed Translation scheme that translates arithmetic expressions from infix notation into postfix notation. You should write the context-free grammar, the semantic attributes for each of the grammar symbols, and corresponding semantic rules. Explain the scheme with the given input " $4*5 + 7*2 - 2*1$ ".	6	3	3	1,2

	2				
14.a)	Explain the usage activation record in stack allocation strategy.	4	2	4	1
,	How it is different from heap allocation?				
b)	For the given code snippet to compute fibonacci numbers recursively: int f(int n) {	6	3	4	1,2
	int t, n;				
	if(n<2) return 1;				
	s = f(n-1); t = f(n-2);				
	return s+t;				
	}				
۰.	Suppose activation record of 'f' includes (return value, argument n, local s, local t); other variables may possible. If the initial call is f(5).				
	i) Show the complete activation record.				
	ii) Show the stack and its activation records at the instance when the first $f(1)$ call is about to return.				
15.a)	What is peephole optimization? Explain peephole optimization techniques with suitable examples.	4	2	5	1
b)	Construct the DAG for the basic block: d:= b * c	6	3	5	1,2
	e:= a + b x:= b * c a:= e - d				
16.a)	Describe different language processors.	4	2	1	1
		6	3	2	1,2
b)	Explain the rules to remove left recursion. Remove the left recursion in the following grammar.	0	5	4	1,2
	$S \rightarrow Aa \mid b$ $A \rightarrow Ac \mid Sd \mid b$				
17.	Answer any two of the following:				
a)	Construct syntax directed definition to build annotated parse tree for the expression $(3+4)*(5+6)$ using expression grammar.	5	3	3	1,2
b)	Find first and follow for the given grammar. $E \rightarrow E + T/T$	5	2	4	1
	$T \rightarrow T^*F/F$ $F \rightarrow (E)/id$				
c)	Describe machine independent optimization techniques with suitable examples.	5	2	5	1

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage	
1	Fundamental knowledge (Level-1 & 2)	60	
2	Knowledge on application and analysis (Level-3 & 4)	40	
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	-	

an tad

:: 2 ::